Übungsserie 5 abgeben - Email, wenn Testatpunkt gewünscht - Gedruckt, wenn Korrektur & Testatpunkt gewünscht Lerntip http://www.educeth.ch/informatik/ Was wir heute tun 25 Backtracking Repetition Rekursion

Repetition Rekursion

Besprechung Ü4

Vorbereitung Ü6

Was ist Rekursion?

```
PROCEDURE Fakultaet(n : INTEGER): INTEGER;

BEGIN

IF n <= 1 THEN
RETURN 1;
ELSE
RETURN n * Fakultaet(n-1);
END
END Fakultaet;
```

Repetition Rekursion

Was passiert bei der Rekursion?

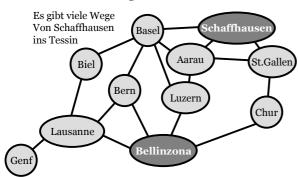
Ablauf bei Aufruf a := Fakultaet(Θ);

```
If n <= 1 THEN (* n = 3 *)
ELSE RETURN n * Fakultaet(n-1); (* n = 3 *)

(* 1. rekursiver Aufruf Fakultaet(②) *)
If n <= 1 THEN (* n = 2 *)
ELSE RETURN n * Fakultaet(n-1); (* n = 2 *)

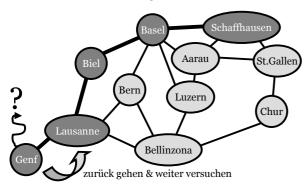
(* 2. rekursiver Aufruf Fakultaet(①) *)
If n <= 1 THEN (* n = 1 *)
RETURN 1;

zurück zur 1. rekursiven Prozedur Fakultaet(⑥) *)
RETURN 2 * 1;


zurück zur 2. rekursiven Prozedur Fakultaet(⑥) *)
RETURN 3 * 2;
</pre>
```

Am Schluss: a := 6;

Suche mit Backtracking


Wir suchen einen Weg von einem Ort zu einem Anderen!

"zurückgehen" – Backtracking

Naiv müssen wir alle Möglichkeiten durchtesten:

Backtracking & Heuristiken

Systematische Art der Suche in einem Graphen

Wenn eine Teillösung in eine Sackgasse führt, geh zurück & versuche andere Wege

Hellsehen, ob Sackgasse kommt: Heuristiken!

Heuristiken sind "Strategien, die mit höherer Wahrscheinlichkeit (jedoch ohne Garantie) das Auffinden einer Lösung beschleunigen sollen."

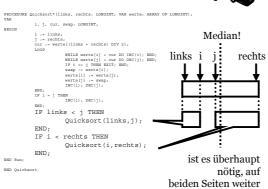
Heuristiken finden ist beinahe so schwer wie Hellsehen!

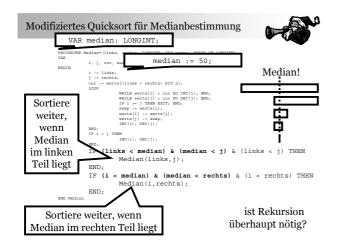
 $sie he \ auch \ http://www.educeth.ch/informatik/vortraege/backtracking/docs/backtracking_folien.pdf$

Backtracking in Pseudocode


```
PROCEDURE findeLoesung( schritte: INTEGER,
VAR bisher: WEG): BOOLEAN;
WHILE es noch Teillösungen gibt do
wähle einen noch nicht getesteten schritt;
IF schritt = erlaubt THEN
bisher:= bisher & schritt;
IF bisher = vollständig THEN RETURN TRUE;
ELSE
IF findeLoesung( schritte + 1, bisher ) THEN
RETURN TRUE;
ELSE
bisher:= bisher ohne schritt;
END;
END;
END;
END;
END;
ERD;
RETURN FALSE;
```

Besprechung Übungsserie 4 Aufgabe 1


Median Berechnung



Komplettes Quicksort nötig?

zu sortieren?

Modifiziertes Quicksort für Medianbestimmung – Besser

```
PROCEDURE MedianIf(links, rechts; LONGINT; WAR werte; ARRAY OF LONGINT);

i. j. cur. scape; LONGINT;

ok : BOOLEAN; mitte : LONGINT;

mitte : (links + rechts) DIV 2; ok := FALSE;

REPRAT

i := links;
cur := werte(links + rechts) DIV 2;
werte(links + rechts) DIV 2;
werte(links + rechts) DIV 2;
multis werte(links) DIV 2;
exp := werte(links) DIV 2;
exp := werte(links);
```

Besprechung Übungsserie 4 Aufgabe 2

5% Barriere = Median, einfach mehr rechts

Besprechung Übungsserie 4 Aufgabe 3a

Datei öffnen;
erstes zeichen lesen;
while zeichen # "#" do

REPEAT
Out.Char(zeichen); Lies nächstes Zeichen
UNTIL zeichen = "#";
Lies nächstes Zeichen;
REPEAT
Out.Char(zeichen); Lies nächstes Zeichen
UNTIL zeichen = "#";
Out.Lh; Lies nächstes Zeichen;
END;

Besprechung Übungsserie 4 Aufgabe 3b Datei a öffnen; Datei b öffnen; lies beide Volumen vola und volb; while $\sim a.eof \& \sim b.eof$ do IF vergleiche(vola, volb) = othenOut.String(vola); ELSIF vergleiche(vola, volb) > 0 THEN lies nächstes volb; (* I *) ELSIF vergleiche(vola, volb) < 0 THEN lies nächstes vola; (* II *) END; END; mit drei Dateien eigentlich gleich, nur zusätzliche Rekursion bei (* I *) und (* II *) Vorbereitung Übungsserie 6 Aufgabe 1 Aufgabe 1. Permutationen. Entwickeln Sie ein rekursives Programm zur Auflistung aller n! Permutationen von n Elementen. Beispiel: Elemente 1, 2, 3 Permutationen 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1. Strategie herausfinden! PROCEDURE Perm(elem: ARRAY OF INTEGER; schritt: INTEGER); BEGIN ${\it IF schritt = Anzahl \ Elemente \ THEN}$ drucke alle übrigen Varianten; ELSE für alle übrigen Varianten i Perm(elem[schritt] := i , schritt + 1); END; END Perm; Vorbereitung Übungsserie 6 Aufgabe 2 PROCEDURE hilbert(stufe : INTEGER, richtung : INTEGER); IF stufe = 1 THEN zeichnen; 90° nach rechts drehen; zeichnen; 90° nach rechts drehen; zeichnen; ELSE (* hmmm? *) END;

END hilbert;

Vorbereitung Übungsserie 6 Aufgabe 3	
Reihen zu dritt, wobei nie zweimal die gleichen hintereinander	
maximal einmal Ende einer Gruppe & Anfang anderer Gruppe sind	
nicht nebeneinander alle erlaubten Permutationen sind gefragt!	
also ähnlich wie Aufgabe 1, nur müssen mehr	
Regeln beachtet werden	
"für alle übrigen Varianten" muss man also anpassen!	
alle bisherigen Nachbarschaften protokollieren!	
Vorbereitung Übungsserie 6 Aufgabe 4	
Springertouren, linke untere Ecke als Start & Ziel	
einfaches Problem, weil es 33'439'123'484'294 Lösungen hat!	
um beim 8x8 alle Möglichkeiten zu testen, benötigen wir beinahe unendlich lange!	
deshalb versucht es zuerst mit 6x6 Schachbrett – ungemein einfacher!	
Lösungsansatz: Backtracking	
Heuristiken: http://www.borderschess.org/G-KTsimple.htm http://www.ubka.uni-karlsruhe.de/vvv/1992/informatik/11/11.text http://www.inf.hs-zigr.de/-wagenkn/TI/ Komplexitaet/Referate/Graphen/problem2.html	